12 research outputs found

    Meta-heuristic algorithms for optimized network flow wavelet-based image coding

    Get PDF
    Optimal multipath selection to maximize the received multiple description coding (MDCs) in a lossy network model is proposed. Multiple description scalar quantization (MDSQ) has been applied to the wavelet coefficients of a color image to generate the MDCs which are combating transmission loss over lossy networks. In the networks, each received description raises the reconstruction quality of an MDC-coded signal (image, audio or video). In terms of maximizing the received descriptions, a greater number of optimal routings between source and destination must be obtained. The rainbow network flow (RNF) collaborated with effective meta-heuristic algorithms is a good approach to resolve it. Two meta-heuristic algorithms which are genetic algorithm (GA) and particle swarm optimization (PSO) have been utilized to solve the multi-objective optimization routing problem for finding optimal routings each of which is assigned as a distinct color by RNF to maximize the coded descriptions in a network model. By employing a local search based priority encoding method, each individual in GA and particle in PSO is represented as a potential solution. The proposed algorithms are compared with the multipath Dijkstra algorithm (MDA) for both finding optimal paths and providing reliable multimedia communication. The simulations run over various random network topologies and the results show that the PSO algorithm finds optimal routings effectively and maximizes the received MDCs with assistance of RNF, leading to reduce packet loss and increase throughput

    Self-Adaptive Hybrid PSO-GA Method for Change Detection Under Varying Contrast Conditions in Satellite Images

    No full text
    This paper proposes a new unsupervised satellite change detection method, which is robust to illumination changes. To achieve this, firstly, a preprocessing strategy is used to remove illumination artifacts and results in less false detection than traditional threshold-based algorithms. Then, we use the corrected input data to define a new fitness function based on the difference image. The purpose of using Self-Adaptive Hybrid Particle Swarm Optimization-Genetic Algorithm (SAPSOGA) is to combine two meta-heuristic optimization algorithms to search and find the feasible solution in the NP-hard change detection problem rapidly and efficiently. The hybrid algorithm is employed by letting the GA and PSO run simultaneously and similarities of GA and PSO have been considered to implement the algorithm, i.e. the population. In the SAPSOGA employed, in each iteration/generation the two population based algorithms share different amount of information or individual(s) between themselves. Thus, each algorithm informs each other about their best optimum results (fitness values and solution representations) which are obtained in their own population. The fitness function is minimized by using binary based SAPSOGA approach to produce binary change detection masks in each iteration to obtain the optimal change detection mask between two multi temporal multi spectral landsat images. The proposed approach effectively optimizes the change detection problem and finds the final change detection mask

    Genetic Algorithm-based Variable Selection Approach for High-Growth Firm Prediction

    No full text

    Genetic Algorithm-based Variable Selection Approach for High-Growth Firm Prediction

    No full text

    Unsupervised Change Detection in Landsat Images with Atmospheric Artifacts : A Fuzzy Multiobjective Approach

    No full text
    A new unsupervised approach based on a hybrid wavelet transform and Fuzzy Clustering Method (FCM) with Multiobjective Particle Swarm Optimization (MO-PSO) is proposed to obtain a binary change mask in Landsat images acquired with different atmospheric conditions. The proposed method uses the following steps: preprocessing,  classification of preprocessed image, and  binary masks fusion. Firstly, a photometric invariant technique is used to transform the Landsat images from RGB to HSV colour space. A hybrid wavelet transform based on Stationary (SWT) and Discrete Wavelet (DWT) Transforms is applied to the hue channel of two Landsat satellite images to create subbands. After that, mean shift clustering method is applied to the subband difference images, computed using the absolute-valued difference technique, to smooth the difference images. Then, the proposed method optimizes iteratively two different fuzzy based objective functions using MO-PSO to evaluate changed and unchanged regions of the smoothed difference images separately. Finally, a fusion approach based on connected component with union technique is proposed to fuse two binary masks to estimate the final solution. Experimental results show the robustness of the proposed method to existence of haze and thin clouds as well as Gaussian noise in Landsat images.open access</p

    Change Detection in Multispectral Landsat Images Using Multiobjective Evolutionary Algorithm

    No full text

    DIGITNET : A Deep Handwritten Digit Detection and Recognition Method Using a New Historical Handwritten Digit Dataset

    No full text
    This paper introduces a novel deep learning architecture, named DIGITNET, and a large-scale digit dataset, named DIDA, to detect and recognize handwritten digits in historical document images written in the nineteen century. To generate the DIDA dataset, digit images are collected from 100,000 Swedish handwritten historical document images, which were written by different priests with different handwriting styles. This dataset contains three sub-datasets including single digit, large-scale bounding box annotated multi-digit, and digit string with 250,000, 25,000, and 200,000 samples in Red-Green-Blue (RGB) color spaces, respectively. Moreover, DIDA is used to train the DIGITNET network, which consists of two deep learning architectures, called DIGITNET-dect and DIGITNET-rec, respectively, to isolate digits and recognize digit strings in historical handwritten documents. In DIGITNET-dect architecture, to extract features from digits, three residual units where each residual unit has three convolution neural network structures are used and then a detection strategy based on You Look Only Once (YOLO) algorithm is employed to detect handwritten digits at two different scales. In DIGITNET-rec, the detected isolated digits are passed through 3 different designed Convolutional Neural Network (CNN) architectures and then the classification results of three different CNNs are combined using a voting scheme to recognize digit strings. The proposed model is also trained with various existing handwritten digit datasets and then validated over historical handwritten digit strings. The experimental results show that the proposed architecture trained with DIDA (publicly available from: https://didadataset.github.io/DIDA/) outperforms the state-of-the-art methods. CC BY 4.0</p

    CArDIS: A Swedish Historical Handwritten Character and Word Dataset

    No full text
    This paper introduces a new publicly available image-based Swedish historical handwritten character and word dataset named C haracter Ar kiv D igital S weden (CArDIS) ( https://cardisdataset.github.io/CARDIS/ ). The samples in CArDIS are collected from 64, 084 Swedish historical documents written by several anonymous priests between 1800 and 1900. The dataset contains 116, 000 Swedish alphabet images in RGB color space with 29 classes, whereas the word dataset contains 30, 000 image samples of ten popular Swedish names as well as 1, 000 region names in Sweden. To examine the performance of different machine learning classifiers on CArDIS dataset, three different experiments are conducted. In the first experiment, classifiers such as Support Vector Machine (SVM), Artificial Neural Networks (ANN), k-Nearest Neighbor (k-NN), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Random Forest (RF) are trained on existing character datasets which are Extended Modified National Institute of Standards and Technology (EMNIST), IAM and CVL and tested on CArDIS dataset. In the second and third experiments, the same classifiers as well as two pre-trained VGG-16 and VGG-19 classifiers are trained and tested on CArDIS character and word datasets. The experiments show that the machine learning methods trained on existing handwritten character datasets struggle to recognize characters efficiently on the CArDIS dataset, proving that characters in the CArDIS contain unique features and characteristics. Moreover, in the last two experiments, the deep learning-based classifiers provide the best recognition rates

    SinkholeNet: A novel RGB-slope sinkhole dataset and deep weakly-supervised learning framework for sinkhole classification and localization

    No full text
    This paper proposes a novel multimodal deep weakly-supervised learning framework, SinkholeNet, to classify and localize sinkhole(s) in high-resolution RGB-slope aerial images. The SinkholeNet first employs a multimodal Convolutional Neural Network (CNN) architecture that simultaneously extracts features from the input RGB image and ground slope map and then fuses the extracted features. It then uses an improved ShuffleNet architecture on the fused features to classify patches as sinkholes or non-sinkholes. Finally, the last extracted feature maps, belonging to the sinkhole class, are used as input of gradient-weighted class activation mapping (Grad-CAM) to localize sinkhole(s) in a weakly-supervised setting. The proposed weakly-supervised framework intends to increase the available labeled data for training and decrease the cost of human annotation. We also introduce a novel publicly available weakly labeled sinkhole dataset comprising RGB-slope paired image patches to support reproducible research. The experimental results on the newly introduced dataset show that the SinkholeNet outperforms the other methods considered in this paper both for sinkhole classification and localization

    An XAI approach for COVID-19 detection using transfer learning with X-ray images

    Get PDF
    The coronavirus disease (COVID-19) has continued to cause severe challenges during this unprecedented time, affecting every part of daily life in terms of health, economics, and social development. There is an increasing demand for chest X-ray (CXR) scans, as pneumonia is the primary and vital complication of COVID-19. CXR is widely used as a screening tool for lung-related diseases due to its simple and relatively inexpensive application. However, these scans require expert radiologists to interpret the results for clinical decisions, i.e., diagnosis, treatment, and prognosis. The digitalization of various sectors, including healthcare, has accelerated during the pandemic, with the use and importance of Artificial Intelligence (AI) dramatically increasing. This paper proposes a model using an Explainable Artificial Intelligence (XAI) technique to detect and interpret COVID-19 positive CXR images. We further analyze the impact of COVID-19 positive CXR images using heatmaps. The proposed model leverages transfer learning and data augmentation techniques for faster and more adequate model training. Lung segmentation is applied to enhance the model performance further. We conducted a pre-trained network comparison with the highest classification performance (F1-Score: 98%) using the ResNet model
    corecore